首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71756篇
  免费   7636篇
  国内免费   2803篇
电工技术   1185篇
技术理论   1篇
综合类   3058篇
化学工业   25862篇
金属工艺   10138篇
机械仪表   1427篇
建筑科学   2109篇
矿业工程   993篇
能源动力   1395篇
轻工业   9847篇
水利工程   473篇
石油天然气   1154篇
武器工业   385篇
无线电   2843篇
一般工业技术   16431篇
冶金工业   3192篇
原子能技术   272篇
自动化技术   1430篇
  2024年   502篇
  2023年   1712篇
  2022年   2411篇
  2021年   3202篇
  2020年   3077篇
  2019年   2590篇
  2018年   2916篇
  2017年   3258篇
  2016年   3305篇
  2015年   3421篇
  2014年   4063篇
  2013年   5162篇
  2012年   4559篇
  2011年   5642篇
  2010年   3820篇
  2009年   4135篇
  2008年   3441篇
  2007年   3777篇
  2006年   3599篇
  2005年   2790篇
  2004年   2732篇
  2003年   2330篇
  2002年   1896篇
  2001年   1291篇
  2000年   1173篇
  1999年   903篇
  1998年   786篇
  1997年   684篇
  1996年   518篇
  1995年   463篇
  1994年   334篇
  1993年   243篇
  1992年   250篇
  1991年   202篇
  1990年   244篇
  1989年   236篇
  1988年   87篇
  1987年   59篇
  1986年   60篇
  1985年   71篇
  1984年   67篇
  1983年   33篇
  1982年   58篇
  1981年   7篇
  1980年   36篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
991.
采用两步化学沉淀法制备了Fe_3O_4@MgO纳米复合材料,研究了纳米复合材料对Pb~(2+)的吸附性能。结果表明,所制备的复合材料具有较高的顺磁性和稳定性,其饱和磁化强度为58.07 emu/g,初始氧化增重温度为125℃,对Pb~(2+)有较好的吸附能力,在50 min内可以达到吸附平衡,最大吸附量为711.5 mg/g,其吸附过程符合准二级动力学模型和Langmuir等温吸附模型。  相似文献   
992.
系统论述了不同稀土元素的结构特性,基于镁合金的强化机制,并结合当前稀土镁合金的研究现状,展示了稀土元素的添加对镁合金在强度、塑性及抗蠕变性能等方面带来的变化,尤其是对镁合金塑性的影响.其中,区别于传统的强化机制,对添加稀土元素后出现的LPSO结构相对镁合金性能的影响也进行了重点讨论,进一步对镁合金中的稀土元素合金化后的改性作用及前景进行了探讨和展望.  相似文献   
993.
采用传统的陶瓷烧结技术,通过添加0.15%(摩尔分数)CeO2,在1120℃烧结2h,成功制备了新型无铅压电陶瓷Ba0.9 Ca0.1 Ti1-x Snx O3,并且检测了陶瓷样品的微结构和电性能.XRD显示所有陶瓷样品均具有纯的钙钛矿结构,在室温下为典型的四方相,SEM显示适量添加锡离子可以提高陶瓷致密性.在室温下,锡离子改性的BaTiO3基压电陶瓷在x=0.02处显示了优异的压电、介电和铁电性能(d33=276 pC/N,kp=46%,εr=3678,tanδ=2.4%,Pr=18.2μC/cm2,EC=1.12 kV/mm).这些优异的检测结果证实适当添加锡离子能改善BaT iO3基压电陶瓷的电性能.  相似文献   
994.
林伟辉  付甲  王志华  辛浩 《材料导报》2017,31(20):158-163, 169
基于Pellenq等的建模思路,构造了不同钙硅比(C/S)的水化硅酸钙(C-S-H)原子模型,采用分子动力学方法模拟了C-S-H在轴向拉伸载荷作用下的力学性能。重点比较分析了不同钙硅比的C-S-H在无水及含水情况下的拉伸应力-应变曲线。模拟结果表明:(1)与钙硅比为1.0的情况相比,钙硅比大于1.0时C-S-H结构的抗拉强度显著下降;(2)钙硅比大于1.0时,钙氧间的相互作用在承受载荷方面起重要作用,有效弥补了结构中因SiO_2基团缺失引起的缺陷,使得C-S-H的强度下降程度趋缓;(3)当应变达到一定程度时,水分子能够切断钙氧间的相互作用,使得C-S-H结构的强度进一步降低甚至引起断裂失效。  相似文献   
995.
Electron beam melting (EBM), as one of metal additive manufacturing technologies, is considered to be an innovative industrial production technology. Based on the layer‐wise manufacturing technique, as‐produced parts can be fabricated on a powder bed using the 3D computational design method. Because the melting process takes place in a vacuum environment, EBM technology can produce parts with higher densities compared to selective laser melting (SLM), particularly when titanium alloy is used. The ability to produce higher quality parts using EBM technology is making EBM more competitive. After briefly introducing the EBM process and the processing factors involved, this paper reviews recent progress in the processing, microstructure, and properties of titanium alloys and their composites manufactured by EBM. The paper describes significant positive progress in EBM of all types of titanium in terms of solid bulk and porous structures including Ti–6Al–4V and Ti–24Nb–4Zr–8Sn, with a focus on manufacturing using EBM and the resultant unique microstructure and service properties (mechanical properties, fatigue behaviors, and corrosion resistance properties) of EBM‐produced titanium alloys.
  相似文献   
996.
Multi‐principal elemental alloys, commonly referred to as high‐entropy alloys (HEAs), are a new class of emerging advanced materials with novel alloy design concept. Unlike the design of conventional alloys, which is based on one or at most two principal elements, the design of HEA is based on multi‐principal elements in equal or near‐equal atomic ratio. The advent of HEA has revived the alloy design perception and paved the way to produce an ample number of compositions with different combinations of promising properties for a variety of structural applications. Among the properties possessed by HEAs, sluggish diffusion and strength retention at elevated temperature have caught wide attention. The need to develop new materials for high‐temperature applications with superior high‐temperature properties over superalloys has been one of the prime concerns of the high‐temperature materials research community. The current article shows that HEAs have the potential to replace Ni‐base superalloys as the next generation high‐temperature materials. This review focuses on the phase stability, microstructural stability, and high‐temperature mechanical properties of HEAs. This article will be highly beneficial for materials engineering and science community whose interest is in the development and understanding of HEAs for high‐temperature applications.  相似文献   
997.
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass‐fiber‐reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum‐assisted resin infusion (VARI) processing and are subjected to static tensile and three‐point‐bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF2/SMA/GF1/SMA/GF2] and four SMA wires in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] exhibit optimal performance. The flexural strength of the optimal four‐SMA‐wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode‐I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
  相似文献   
998.
999.
New biocompatible and biodegradable Mg–Nb composites used as bone implant materials are fabricated through powder metallurgy process. Mg–Nb mixture powders are prepared through mechanical milling and manual mixing. Then, the Mg–Nb composites are fabricated through cold press and sintering processes. The effect of mechanical milling and Nb particles as reinforcements on the microstructures and mechanical properties of Mg–Nb composites are investigated. The mechanical milling process is found to be effective in reducing the size of Mg and Nb particles, distributing the Nb particles uniformly in the Mg matrix and obtaining Mg–Nb composite particles. The Mg–Nb composite particles can be bound together firmly during the sintering process, result in Mg–Nb composite structures with no intermetallic formation, lower porosity, and higher mechanical properties compared to composites prepared through manual mixing. Interestingly, the mechanical properties of manually mixed Mg–Nb composites appear to be even lower than that of pure Mg.
  相似文献   
1000.
The Fe–Ni–P–Cu alloys with different copper content (0, 0.5, 1, and 2 wt%) are fabricated by liquid phase sintering (LPS) at 950 °C. The nano‐Cu powder is mechanically mixed for 90 min with Fe–Ni–P composite powder using the ethanol as the medium. The microstructure, microhardness and compressive properties of Fe–Ni–P–Cu alloys are investigated. The results indicate that the copper is beneficial to improve the mechanical properties of sintered specimens. The sample contains a small amount of γ‐(Fe, Ni) phase when the copper content is 1 wt%, which results in its the highest compressive yield strength (948.1 MPa). The highest microhardness of 371 HV is accessible in Fe–Ni–P–Cu alloy with 2 wt% Cu. The fracture surface analysis indicates that sintered specimens with Cu addition exhibit a typical intergranular mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号